Alkylsulfonates as probes of uncoupling protein transport mechanism. Ion pair transport demonstrates that direct H(+) translocation by UCP1 is not necessary for uncoupling.
نویسندگان
چکیده
The mechanism of fatty acid-dependent uncoupling by mitochondrial uncoupling proteins (UCP) is still in debate. We have hypothesized that the anionic fatty acid head group is translocated by UCP, and the proton is transported electroneutrally in the bilayer by flip-flop of the protonated fatty acid. Alkylsulfonates are useful as probes of the UCP transport mechanism. They are analogues of fatty acids, and they are transported by UCP1, UCP2, and UCP3. We show that undecanesulfonate and laurate are mutually competitive inhibitors, supporting the hypothesis that fatty acid anion is transported by UCP1. Alkylsulfonates cannot be protonated because of their low pK(a), consequently, they cannot catalyze electroneutral proton transport in the bilayer and cannot support uncoupling by UCP. We report for the first time that propranolol forms permeant ion pairs with the alkylsulfonates, thereby removing this restriction. Because a proton is transported with the neutral ion pair, the sulfonate is able to deliver protons across the bilayer, behaving as if it were a fatty acid. When ion pair transport is combined with UCP1, we now observe electrophoretic proton transport and uncoupling of brown adipose tissue mitochondria. These experiments confirm that the proton transport of UCP-mediated uncoupling takes place in the lipid bilayer and not via UCP itself. Thus, UCP1, like other members of its gene family, translocates anions and does not translocate protons.
منابع مشابه
Mechanism of Fatty-Acid-Dependent UCP1 Uncoupling in Brown Fat Mitochondria
Mitochondrial uncoupling protein 1 (UCP1) is responsible for nonshivering thermogenesis in brown adipose tissue (BAT). Upon activation by long-chain fatty acids (LCFAs), UCP1 increases the conductance of the inner mitochondrial membrane (IMM) to make BAT mitochondria generate heat rather than ATP. Despite being a member of the family of mitochondrial anion carriers (SLC25), UCP1 is believed to ...
متن کاملOn the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein.
Uncoupling protein mediates electrophoretic transport of protons and anions across the inner membrane of brown adipose tissue mitochondria. The mechanism and site of proton transport, the mechanism by which fatty acids activate proton transport, and the relationship between fatty acids and anion transport are unknown. We used fluorescent probes to measure H+ and anion transport in vesicles reco...
متن کاملUncoupling protein, H+ transport and regulation.
The biochemical functions of uncoupling proteins (UCPs) are discussed with the view of UCP1 as a paradigm. In contrast with UCP1, the heterologous expression of UCP3 in yeast is found to result primarily in extra-mitochondrial deposits and thus is unsuitable for studying UCP3 function. On expression in Escherichia coli inclusion bodies, UCPs extracted and incorporated into vesicles showed no H(...
متن کاملSuperoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants.
Superoxide activates nucleotide-sensitive mitochondrial proton transport through the uncoupling proteins UCP1, UCP2, and UCP3 (Echtay, K. S., et al. (2002) Nature 415, 1482-1486). Two possible mechanisms were proposed: direct activation of the UCP proton transport mechanism by superoxide or its products and a cycle of hydroperoxyl radical entry coupled to UCP-catalyzed superoxide anion export. ...
متن کاملCysteine residues are not essential for uncoupling protein function.
The uncoupling protein (UCP) of brown adipose tissue is a regulated proton carrier which allows uncoupling of mitochondrial respiration from ATP synthesis and, therefore, dissipation of metabolic energy as heat. In this article we demonstrate that, when UCP is expressed in Saccharomyces cerevisiae, it retains all its functional properties: proton and chloride transport, high-affinity binding of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 34 شماره
صفحات -
تاریخ انتشار 2001